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The flow in a plane liquid jet from an aperture is obtained by direct simulation of
the Navier–Stokes equations. The gas–liquid interface is tracked using the level set
method. Flows are calculated for different Reynolds and Weber numbers. When We =
∞, the maximum value of the discharge coefficient appears around Re = O(100). The
regions that are vulnerable to cavitation owing to the total stress are identified from
calculations based on Navier–Stokes equations and viscous potential flow; the two
calculations yield similar results for high Reynolds numbers. We prove that the
classical potential flow solution does not give rise to a normal component of the rate
of strain at the free streamline. Therefore, the normal component of the irrotational
viscous stresses also vanishes and cannot change the shape of the free surface. The
results of calculations of flows governed by the Navier–Stokes equations are close
to those for viscous potential flow outside the vorticity layers at solid boundaries.
The Navier–Stokes solutions for the axisymmetric aperture are also given for two
values of Reynolds numbers. The results for axisymmetric and planar apertures are
qualitatively similar, but the axisymmetric apertures have a lower discharge coefficient
and less contraction.

1. Introduction
High-pressure atomizers and spray generators are of great interest in industry.

They have many applications such as fuel injectors, pharmaceutical sprays and
agricultural sprays.

It is known that generally the liquid/air interaction is very important in the breakup
of liquid jets. However, experimental studies by Tamaki et al. (1998, 2001) and
Hiroyasu (2000) show that the disturbances inside the nozzle caused by the collapse
of travelling cavitation bubbles make a substantial contribution to the breakup of
the exiting liquid jet. Even with high-pressure drops, the main flow of a liquid jet
does not atomize greatly when a disturbance caused by cavitation is not present.
Nurick (1976) also observed that the presence of cavitation in a nozzle will decrease
the uniformity of the mixing for unlike impinging doublets. He & Ruiz (1995) studied
the effect of cavitation on turbulence in flows through plain orifices. They measured the
velocity field for both cavitating and non-cavitating flow in the same geometry. They
observed that the impingement of the free-surface flow onto the orifice wall increases
the turbulence generation behind the cavity. Also, turbulence in the cavitating flow is
higher and decays more slowly than in the non-cavitating flow.
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Many numerical studies have been performed on the cavitation inside the orifice
flow (Xu, Heister & Blaisdell 2004; Chen & Heister 1996; Bunnell & Heister 2000).
Bunnell et al. (1999) studied the unsteady cavitating flow in a slot. They found that
partially cavitated slots undergo a periodic oscillation when the Strouhal number
is near one. The Strouhal number is based on orifice length and Bernoulli velocity.
Different models for two-phase flow and cavitation have been used in the past. For
example, Kubota, Kato & Yamaguchi (1992) derived a constitutive equation for
the pseudo-density from the Rayleigh–Plesset equation for bubble dynamics. These
models are based on pressure, and neglect viscous stresses. In the present work, we
consider the effects of viscous stresses.

Many experimental studies of cavitation can be found in the literature. Mishra
& Peles (2005a ,b) looked at the cavitation in flow through a micro-orifice inside
a silicon microchannel. Payri et al. (2004) studied the influence of cavitation on
the internal flow and the spray characteristics in diesel injection nozzles. Ahn, Kim
& yoon (2006) studied the effects of cavitation and hydraulic flip on the breakup
of a liquid jet injected perpendicularly into subsonic crossflow. They showed that
cavitation shortens the length at which a liquid column will break up. Jung, Khil
& Yoon (2006) considered the breakup characteristics of liquid sheets formed by a
like-doublet injection. They found that turbulence delays sheet breakup and shortens
the wavelength of both ligaments and sheets. Ganippa et al. (2004) considered the
cavitation growth in the nozzle as they increased the flow rate. First, travelling bubbles
are created. These bubbles are detached from the wall and move with the stream. By
increasing the flow, an unsteady cloud of cavitation is observed. Further increase of
the flow rate causes a non-symmetrical distribution of cavitation within the nozzle
and its extension to the nozzle exit. More atomization occurs at the side with stronger
cavitation.

The dynamics of liquid sheets has also been extensively described in the literature.
These sheets are important in atomization and spray combustion (Lefebvre 1989)
and curtain coating (Brown 1961). Jets created by slot atomizers are close to two-
dimensional flows.

Flow through an aperture is a simple example of flow with hydraulic flip that occurs
in nozzles with sharp corners. In experiments on cavitating orifices, the occurrence
of hydraulic flip coincides with the disappearance of cavitation bubbles and increase
in the breakup length of the jet (e.g. Tamaki et al. 1998). However, the present work
shows that cavitation is possible in hydraulically flipped flows, especially in the case
of low Reynolds numbers where the viscous stress is significant.

In this paper, we are interested in the idea that cavitation can induce the formation
of detached vapour bubbles that travel with the liquid.

According to the traditional criterion, cavitation occurs when the pressure drops
below the breaking strength of liquid. This threshold value depends on the type
of nucleation. In the homogeneous nucleation, the nucleation sites are temporary
microscopic voids that are associated with thermal motion within the liquid. In this
case, the critical pressure could be much lower than the vapour pressure. However,
in heterogeneous nucleation, which occurs in most engineering situations, rupture
occurs at the boundary between the liquid and solid, or between liquid and small
solid particles suspended in the liquid. In this case, rupture could occur at pressures
closer to the vapour pressure. It can be argued that in the case of heterogeneous
cavitation, which depends so critically on impurities and sample preparation, the
opening of cavitation in a liquid is better described by the words ‘breaking strength’
than by the thermodynamics of ideal phase, change of liquid/vapour in equilibrium.
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Figure 1. Geometry of the computational domain.

The action of viscous stresses is definitely non-equilibrium; we are using ‘cavitation’ in
the sense of rupture of liquids not following exactly laws of liquid/vapour equilibrium.

Joseph (1998) proposed that cavitation can be induced by the total stress, which
includes both the pressure and the viscous stress. Cavitation occurs when the
maximum principal stress drops below the breaking strength of liquid. Using this
criterion, Funada, Wang & Joseph (2006) predicted cavitation of a two-dimensional
steady viscous potential flow through an aperture. Also, for axisymmetric viscous
flow through an orifice, Dabiri, Sirignano & Joseph (2007) predicted cavitation using
Joseph’s total-stress criterion to post-process the solutions of the Navier–Stokes
equations. These papers take a common approach although the configurations vary
widely. Based on this new criterion, the inception of cavitation at each point in the
field is determined. If cavitation does occur, the flow field can be drastically changed.
This approach is similar to that used in the analysis of hydrodynamic stability in
which the field at risk of instability is very different from the one that develops after
the onset of instability.

The theory of stress-induced cavitation aims to explain the phenomenon of
cavitation observed in moving liquid undergoing strain. This theory modifies the
classical theory which uses only pressure for the cavitation criterion. Now, the total
stress, including the tensile contribution from viscous stress, is included. So, the theory
is intended to improve the understanding and predictive capability for cavitation in
liquids undergoing strain due to motion.

Except for Dabiri et al. (2007), previous calculations on high-pressure-nozzle
cavitation have used the traditional criterion. The purpose of this paper is to use the
new criterion to study cavitation in aperture flow.

2. Theoretical development
2.1. Navier–Stokes flow

In this study, we consider flow of a liquid leaving an aperture in a flat plate and
creating a jet in a stagnant gas. The physical problem and the computational domain
are shown in figure 1, where A is the size of the computational domain and L is
the half-width of the aperture. The Navier–Stokes equations for an incompressible
viscous flow are

ρi

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · (2µiD) + σκδ(d)n, (2.1)



4 S. Dabiri, W. A. Sirignano and D. D. Joseph

D =
1

2

[
(∇u) + (∇u)T

]
, (2.2)

∇ · u = 0, (2.3)

where u, ρ and µ are the velocity, density and viscosity of the fluid, respectively.
Subscript i could represent either liquid or gas phase and D is the strain rate tensor.
The last term represents the surface tension as a force concentrated on the interface.
Here, σ is the surface tension coefficient, κ is the curvature of the interface, and
δ is the Dirac delta function. d represents the distance from the interface and n
corresponds to the unit normal vector at the interface. The flow is characterized
by the gas-to-liquid density ratio, viscosity ratio and non-dimensional parameters:
Reynolds number (Re) and Weber number (We), which are defined as follows:

Re =
ρliqUL

µliq

, We =
ρliqU

2L

σ
, ρ-ratio =

ρgas

ρliq

, µ-ratio =
µgas

µliq

, (2.4)

U =

√
2(pu − pd)

ρliq

, (2.5)

where L is the half-width of the aperture, U is the Bernoulli velocity of jet and pu

and pd are the upstream and downstream pressures, respectively.
After finding the velocities and pressure field, we can calculate the stress tensor

using

T = µ
[
(∇u) + (∇u)T

]
− pI (2.6)

where I is the identity matrix and superscript T refers to transpose of a tensor. In the
planar flow the stress tensor has the following form

T =

⎡
⎢⎣

T ′
11 T ′

12 0

T ′
21 T ′

22 0

0 0 0

⎤
⎥⎦ , (2.7)

Therefore, the maximum tensile stress, T11 can be calculated using the planar stress
analysis in the (x, y)-plane:

T11 =
T ′

11 + T ′
22

2
±

√(
T ′

11 − T ′
22

2

)2

+ T ′2
12 . (2.8)

The total-stress criterion is used to find regions in the flow at risk of cavitation.
According to this criterion, cavitation occurs when the maximum principal stress
exceeds the negative of the critical threshold pressure of liquid at local temperature,
i.e.

T11 > −pc. (2.9)

The critical threshold pressure, pc, might be the vapour pressure, pv , or some other
value determined by sample preparation. The dimensionless cavitation number, K ,
defines the critical threshold pressure, pc,

K =
pu − pd

pd − pc

. (2.10)

2.2. Interface tracking and level-set formulation

Several methods have been proposed and implemented to capture the interface, and
model the surface tension in a two-phase flow; these include the front-tracking method
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by Tryggvason et al. (2001) and volume of fluid method by Hirt & Nichols (1981).
Also, Popinet & Zaleski (1999) did an accurate balance of surface tension forces in a
finite, volume method by explicit tracking of the interface. See Scardovelli & Zaleski
(1999) for a review of different methods of interface tracking and surface tension
modelling.

We are considering incompressible flow of two immiscible fluids. The interface
between these fluids moves with the local velocity of the flow field. To track the
motion of the interface the level-set method is used which has been developed by
Osher and coworkers (e.g. Sussman et al. 1998; Osher & Fedkiw 2001). The level-set
function, denoted by θ , is defined as a signed distance function. It has positive values
on one side of the interface (gas phase), and negative values on the other side (liquid
phase). The magnitude of the level set at each point in the computational field is
equal to the distance from that point to the interface.

The level-set function is convected by the flow as a passive scalar variable:

∂θ

∂t
+ u · ∇θ = 0. (2.11)

It is obvious that, if the initial distribution of the level set is a signed distance
function, after a finite time of being convected by a non-uniform velocity field, it will
not remain a distance function. Therefore, we must re-initialize the level-set function
so it will be a distance function (with property of |∇θ | = 1) without changing the
zero level set (position of the interface).

Suppose θ0(x) is the level-set distribution after some time step and is not exactly
a distance function. This can be re-initialized to a distance function by solving the
following partial differential equation (Sussman et al. 1998):

∂θ ′

∂τ
= sign(θ0)(1 − |∇θ ′|) (2.12)

with initial conditions:

θ ′(x, 0) = θ0(x) (2.13)

where

sign(θ) =

⎧⎨
⎩

−1 if θ < 0,
0 if θ = 0,
1 if θ > 0,

(2.14)

and τ is a pseudo-time. The steady solution of (2.12) is the distance function with
property |∇θ | = 1 and since sign(0) = 0, then θ ′ has the same zero level set as θ0.

Now the fluid properties can be defined based on the level set:

ρ = ρliq + (ρgas − ρliq)Hε(θ),

µ = µliq + (µgas − µliq)Hε(θ), (2.15)

where Hε is a Heaviside function that is numerically approximated by a smooth jump:

Hε =

⎧⎨
⎩

0 (θ < −ε)
(θ + ε)/(2ε) + sin(πθ/ε)/(2π) (|θ | � ε)
1 (θ > ε)

(2.16)

ε represents the numerical thickness of the interface and has the value of 1.5 times
the cell size. This Heaviside function corresponds to a delta function that can be used
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to evaluate the force caused by surface tension:

δε =

{
[1 + cos(πθ/ε)]/(2ε) if |θ | � ε,
0 otherwise,

(2.17)

The last term in the momentum equation (2.1) includes the normal unity vector
and the curvature of the interface which can be calculated as follows:

n =
∇θ

|∇θ | , κ = −∇ · n (2.18)

Expansion of (2.18) in Cartesian coordinates leads to:

κ =
θ2
y θxx − 2θxθyθxy + θ2

x θyy(
θ2
x + θ2

y

)3/2
. (2.19)

2.3. Viscous potential flow

An inviscid approximation has been used widely in the literature to treat the flow
problems with finite viscosity. For example, Moore (1965) studied the rise of a
deformed bubble in a liquid of small viscosity by calculating the dissipation of an
irrotational flow around the bubble. Also, Joseph & Wang (2004) considered the
viscous potential flow for decay of surface gravity waves. The viscous potential flow
satisfies the Navier–Stokes equations, but does not satisfy the boundary condition
for the tangential component of the velocity at a rigid surface and the tangential
component of shear at a free surface.

In the Appendix, it is shown that the potential flow solution of flows with free
streamline satisfies the normal stress boundary condition on the free streamline in
the case of finite viscosity. Therefore, the viscous potential flow solution will be used
here as a comparison to the Navier–Stokes solution of the aperture problem. The
problem of incompressible potential flow through an aperture was solved a long time
ago. The complex potential in the z-plane for this flow is given implicitly by Currie
(1974, p. 129)

f (z) = φ + iψ = −2CcLU

π
ln

{
cosh

[
ln

(
U

dz

df

)]}
− iCcLU (2.20)

where L is half-width of the aperture and Cc is the coefficient of contraction. Funada
et al. (2006) analysed the viscous potential flow solution of the aperture flow. The
velocity field can be derived from the potential function as follows:

u =
1

2

(
df

dz
+

df

dz

)
, v =

i

2

(
df

dz
− df

dz

)
, (2.21)

and from there, the rate of strain tensor can be calculated:

2D =

⎡
⎢⎢⎣

(
d2f

dz 2
+

d2f

dz 2

)
i

(
d2f

dz 2
− d2f

dz 2

)

i

(
d2f

dz 2
− d2f

dz 2

)
−

(
d2f

dz 2
+

d2f

dz 2

)
⎤
⎥⎥⎦ . (2.22)

In order to calculate the maximum tension, the principal stresses should be found.
The diagonalized rate of strain tensor is

2D =

[
λ 0

0 −λ

]
, λ = 2

∣∣∣∣d2f

dz 2

∣∣∣∣ . (2.23)
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Figure 2. Computational domain and the Cartesian grid that is used.

Therefore, the maximum tension T11 is given by

T11 = −p + µλ = −pu +
1

2
ρ(u2 + v2) + µλ. (2.24)

3. Numerical implementation
The numerical solution of the incompressible unsteady Navier–Stokes equations is

performed using the finite-volume method on a staggered grid. The convective and
advective terms are discretized using the quadratic upwind interpolation for convective
kinematics (QUICK) (Hayase, Humphrey & Greif 1992). The semi-implicit method
for pressure-linked equation (SIMPLE), developed by Patankar (1980), is used to
solve the pressure-velocity coupling. The time integration is accomplished using the
second-order Crank–Nicolson scheme. The calculation is done for different Reynolds
numbers.

The computational domain is shown in figure 1. The size of the domain is A = 20L

and a Cartesian grid with 77 924 nodes and 77 361 elements is employed. A non-
uniform distribution of grids is used with clustering in the region of rapid velocities
near the tip of the aperture. The size of the smallest elements is �x/L = 0.001. Figure
2 shows the Cartesian grid used. The following boundary conditions are applied: �1 is
the axis of symmetry and the v-velocity is zero, also the normal derivative of all other
variables vanishes. On the upstream boundary �2, the stagnation pressure is specified
as the boundary condition. On the downstream boundary �3 the static pressure is
specified. On the aperture plate �4, all the velocity components are set to zero.

The dependence of the solution on the size of the domain is investigated. In
order to ensure the accuracy of the constant pressure boundary conditions, a larger
domain is considered with A = 30L. Comparing the results for Re = 100 shows
that the difference in discharge coefficient is below 0.002%. In addition, calculation
is done for a finer grid with the total number of nodes being doubled while keeping
the same grid distribution. Comparison between two calculations for Re = 1000 has
shown that discharge coefficients for the two cases differ by less than 0.1%.

In order to compare the results with the theoretical viscous potential flow solution,
a dynamically inactive environment is required. This has been achieved by decreasing
the viscosity and density of the gaseous phase. In the case with ρ-ratio and µ-ratio of
10−4 each, the flow becomes independent of any further decrease in these parameters.
Therefore, the calculations are performed for these ratios.
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3.1. Effects of Reynolds number

Figure 3 shows the free streamline (liquid–gas interface) for flows with different
Reynolds numbers. It can be seen that the free streamline leaves the aperture wall at
different angles for different Reynolds numbers. This angle is plotted versus Reynolds
number in figure 4.

Figure 5(a) shows the thickness of jet at a distance of 5L downstream from the
aperture. As the Reynolds number decreases, the jet thickness increases. This is
because increasing the thickness of the boundary layer and decreasing the velocity
causes the flow to change direction faster. For a Reynolds number of one, the jet
expands. Expansion of Newtonian liquid jets has been observed before, for example
by Middleman & Gavis (1961). The discharge coefficient of the aperture is plotted in
figure 5(b). The value of Cd has a peak for Re = O(100). As the Reynolds number
decreases from infinity, the thickness of the jet increases, causing an increase in the
discharge coefficient; but for very low Reynolds numbers, the velocity of the jet drops,
therefore, the discharge coefficient decreases.
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Figure 5. (a) Half-thickness of the jet normalized by L and (b) the discharge coefficient for
different Reynolds numbers: �, Navier–Stokes; ——, viscous potential flow.

Pressure distribution for Navier–Stokes and potential solutions is shown in
figure 6 for different Reynolds numbers. (The potential flow solution for lower
values of Re is not shown to avoid complexity.) For higher Reynolds numbers, the
difference between Navier–Stokes and potential solutions is small. However, for lower
Reynolds numbers, the pressure field deviates from potential flow. Figure 7 shows
the viscous stress in the flow and compares it with the viscous potential flow case.
There is a good agreement between them for Re = 1000 except in the wall boundary
layer. Comparing figures 6 and 7, we can see that the viscous stress is two to three
orders of magnitude smaller than the local pressure drop for the two higher values
of Reynolds number. However, for lower Reynolds numbers, such as Re = 10 or 1,
the viscous stress is of the same order as the local pressure drop.

It is important to note that the Reynolds number in these calculations is based
on the Bernoulli jet velocity, which is larger than the actual average velocity of the
jet, especially for low Reynolds numbers. For example, for flow with Re = 1, the
jet velocity is about 20% of the Bernoulli velocity. This causes the strain rates, and
therefore, the stresses to be scaled down by the same ratio. This has the significant
effect of producing smaller regions of high stresses in the Navier—Stakes solution as
seen in figure 7(d).

The total stress is calculated and compared with the threshold stress. The regions
in which the cavitation criterion is satisfied are identified.

The aperture flow is always hydraulically flipped; so, the acceleration of the liquid
near the exit corner is not large and the local pressure drop is not significant.
Therefore, the chance of having cavitation is related to the contribution of viscous
stress in the total stress tensor. Figure 8 shows the regions at risk of cavitation in
different flows with the same Reynolds number and different cavitation numbers,
K , corresponding to different values of critical pressure, pc. Although the existence
of cavitation bubbles could change the flow field, these bubbles cannot persist far
downstream from the inception point where conditions favourable to cavitation have
disappeared and the bubbles collapse. We have shown that aperture flows at low
Reynolds numbers may cavitate owing to viscous stresses under conditions, such as
hydraulic flip, which are unfavoarable to cavitation under the conventional criterion.
The experiments on hydraulic flip are carried out for high Reynolds numbers; the
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possible cavitation of flipped flows at low Re, owing to viscous stresses has not been
studied before.

Figure 9 shows how the area of the region vulnerable to cavitation will increase
as the cavitation number increases. For a specific value of K , the cavitating domain
is larger for a lower Reynolds number because the viscous stress is stronger. This
agrees with the statement by Padrino et al. (2007) about the increase in the risk of
cavitation for more viscous fluids.

Another important point about figure 9 is that, for larger Reynolds numbers, the
difference between the cavitating domain predicted by Navier–Stokes solution and
VPF solutions will be greater. That is, for larger Reynolds numbers, the cavitation
area is confined to shear layers and boundary layers which are not present in the
potential flow solution.

Calculations were also done for the round aperture assuming an axisymmetric flow.
A schematic of the flow is shown in figure 10. The results of these calculations are
shown in figure 11. The pressure contours in the round aperture (figure 11a) are
confined to a more compact region than in the planar flow shown in figure 6(b).
Flow acceleration occurs in a smaller region and gives rise to a higher strain rate
and viscous stress in the round aperture, as shown in the viscous stress plots in
figures 11(c) and 7(b).
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3.2. Effects of Weber number

The flows for Weber numbers of 10, 100, 1000 and infinity are calculated and the free
streamlines are shown in figure 12. The flow with a Weber number of 1000 is very
close to the flow with no surface tension, or infinite Weber number. The free stream
for these two cases cannot be distinguished in these figures. As the Weber number
decreases, the jet deviates towards a less contracting jet with smaller curvatures at the
interface.

For flow with a Weber number of 10, the potential regions of cavitation are shown
for Reynolds numbers of 100 and 1000 in figure 13. Comparing these plots with
figure 8, reveals a large difference because of surface tension. The pressure on the
liquid side of the interface will be smaller owing to the curvature of interface. This
causes a larger domain vulnerable to cavitation at lower Weber numbers. Also, since
the boundary layer is larger for the lower Reynolds number, the regions of possible
cavitation will be larger.

4. Conclusions
The Navier–Stokes equations for the two-dimensional flow of a liquid through an

aperture in a flat plate is solved numerically for Reynolds numbers between 1 and
1000. The results are compared to those for viscous potential flow. Funada et al.
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Figure 8. Cavitation threshold curves on which T11 + pc = 0 in different flows with
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Figure 10. Schematic of axisymmetric flow through a round aperture.

(2006) used the free streamline theory of potential flow theory to compute the effects
of viscosity in aperture flow. They did not compute the effect of viscous normal
stresses on the shape of the streamline. In the Appendix, we show that the classical
free streamline theory used by them does not give rise to a normal component of the
strain rate; stresses. It follows that this classical free streamline solution cannot give
rise to a viscous component of the stress, so that, in fact, there is no change of shape of
the free steamline generated by including the effects of viscosity in the potential flow
solution. It is still true that free steamline theory neglects the effects of surface tension.
At the low Reynolds numbers that have been studied here, the flow is expected to be
two-dimensional or axisymmetric. The only cause of three-dimensionality of the flow
comes from the inception of cavitation bubbles which breaks the symmetry around
the centreline or plane of symmetry. Effects of these disturbances to the flow require
further investigations and three-dimensional modelling of the flow.

This research has been supported by the US Army Research Office through grant
W911NF-06-1-0225, with Dr Kevin McNesby and Dr Ralph Anthenien having served
sequentially as program managers. D. D. J. was also supported by NSF grant CBET-
0302837.

Appendix. Boundary condition on normal stress
Here, we shall show that the normal strain rate, the derivative of the normal

velocity in the direction normal to the free streamline, vanishes on the free streamline
of the potential flow solution used by Funada et al. (2006). Therefore, the potential
flow with free stream satisfies the boundary condition of the normal stress on the free
surface of a viscous flow.

We will take the potential function, φ, and streamfunction, ψ , of the potential flow
as the orthogonal curvilinear coordinates. The velocity field in this coordinates has a
simple form:

x1 = φ,
x2 = ψ ,

u1 = q ,
u2 = 0,

}
(A 1)
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where the velocity in the complex domain can be written as:

u − iv = qe−iθ . (A 2)

In order to evaluate the stresses, first we define the scale factors:

h1 = h2 =
1√

u2 + v2
=

1

q
. (A 3)
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Calculating the stresses:

T11 = −p + 2µ

[
1

h1

∂u1

∂x1

+
u2

h1h2

∂h1

∂x2

+
u3

h1h3

∂h1

∂x3

]
= −p + 2µq

∂q

∂φ
, (A 4)

T22 = −p + 2µ

[
1

h2

∂u2

∂x2

+
u3

h2h3

∂h2

∂x3

+
u1

h2h1

∂h2

∂x1

]
= −p − 2µq

∂q

∂φ
, (A 5)

T12 = µ

[
h2

h1

∂

∂x1

(
u2

h2

)
+

h1

h2

∂

∂x2

(
u1

h1

)]
= 2µq

∂q

∂ψ
. (A 6)

Using the Bernoulli equation for viscous potential flow,

pu = p +
1

2
ρq2. (A 7)

Now, we can substitute the pressure back in the equations for normal stresses:

T22 = −pu +
1

2
ρq2 − 2µq

∂q

∂φ
. (A 8)
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Along a streamline we have dφ = qds, where ds is the distance element along the
streamline.

T22 = −pu +
1

2
ρq2 − 2µ

dq

ds
along a streamline. (A 9)

Applying the boundary condition:

T22 = −pd ⇒ dq

ds
=

1

2µ
ρq2 − C

µ
along the free streamline, (A 10)

where C = pu − pd is the pressure difference between stagnation pressure of the flow
and ambient pressure.

Now, we show that for the case of a free jet where s is unbounded, the only
possible solution is q = constant. If dq/ds > 0 initially, then q becomes unbounded,
and if dq/ds < 0 initially, then q becomes zero and then negative with increasing s.
Both of these situations are non-physical, so the only possible solution happens when
dq/ds = 0 initially, which leads to q = constant. This results in both T11 and T22

being constant and equal to −p along the free streamline. Therefore, the irrotational
flow with constant pressure at the bounding streamline satisfies the viscous boundary
condition of normal stress on the free interface. However, it does not satisfy the
condition of zero shear stress on the free surface. To develop the shear stress more,
we consider the irrotationality condition of the flow in Cartesian coordinates:

(∇ × u)3 =
∂v

∂x
− ∂u

∂y
(A 11)

0 =

(
∂v

∂ψ

∂ψ

∂x
+

∂v

∂φ

∂φ

∂x

)
−

(
∂u

∂ψ

∂ψ

∂y
+

∂u

∂φ

∂φ

∂y

)
. (A 12)

Using the velocity field,

u = q cos θ, v = q sin θ , (A 13)

we obtain:

(∇ × u)3 = −q
∂q

∂ψ
+ q2 ∂θ

∂φ
= 0, (A 14)

which results in:
∂q

∂ψ
= q

∂θ

∂φ
. (A 15)

Substituting back in (A 6) and using dφ = qds along a streamline again,

T12 = 2µq
dθ

ds
= 2µqκ, (A 16)

where κ is the curvature of the streamline. So, in planar irrotational flow, in orthogonal
coordinates, one of which is parallel to the streamlines, the shear stress is proportional
to the magnitude of velocity multiplied by the curvature of the streamline.

In conclusion, the irrotational flow satisfies the constant normal stress condition
on the free surface, but does not satisfy the zero shear stress condition on the free
surface and a correction may be necessary.
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